亚洲精品久久久中文字幕-亚洲精品久久片久久-亚洲精品久久青草-亚洲精品久久婷婷爱久久婷婷-亚洲精品久久午夜香蕉

您的位置:首頁技術文章
文章詳情頁

Python產生batch數據的操作

瀏覽:32日期:2022-06-25 13:16:32
產生batch數據

輸入data中每個樣本可以有多個特征,和一個標簽,最好都是numpy.array格式。

datas = [data1, data2, …, dataN ], labels = [label1, label2, …, labelN],

其中data[i] = [feature1, feature2,…featureM], 表示每個樣本數據有M個特征。

輸入我們方法的數據,all_data = [datas, labels] 。

代碼實現

通過索引值來產生batch大小的數據,同時提供是否打亂順序的選擇,根據隨機產生數據量范圍類的索引值來打亂順序。

import numpy as npdef batch_generator(all_data , batch_size, shuffle=True): ''' :param all_data : all_data整個數據集,包含輸入和輸出標簽 :param batch_size: batch_size表示每個batch的大小 :param shuffle: 是否打亂順序 :return: ''' # 輸入all_datas的每一項必須是numpy數組,保證后面能按p所示取值 all_data = [np.array(d) for d in all_data] # 獲取樣本大小 data_size = all_data[0].shape[0] print('data_size: ', data_size) if shuffle: # 隨機生成打亂的索引 p = np.random.permutation(data_size) # 重新組織數據 all_data = [d[p] for d in all_data] batch_count = 0 while True: # 數據一輪循環(epoch)完成,打亂一次順序 if batch_count * batch_size + batch_size > data_size: batch_count = 0 if shuffle: p = np.random.permutation(data_size) all_data = [d[p] for d in all_data] start = batch_count * batch_size end = start + batch_size batch_count += 1 yield [d[start: end] for d in all_data]測試數據

樣本數據x和標簽y可以分開輸入,也可以同時輸入。

# 輸入x表示有23個樣本,每個樣本有兩個特征# 輸出y表示有23個標簽,每個標簽取值為0或1x = np.random.random(size=[23, 2])y = np.random.randint(2, size=[23,1])count = x.shape[0]batch_size = 5epochs = 20batch_num = count // batch_sizebatch_gen = batch_generator([x, y], batch_size)for i in range(epochs): print('##### epoch %s ##### ' % i) for j in range(batch_num): batch_x, batch_y = next(batch_gen) print('-----epoch=%s, batch=%s-----' % (i, j)) print(batch_x, batch_y)

補充:使用tensorflow.data.Dataset構造batch數據集

import tensorflow as tfimport numpy as npdef _parse_function(x): num_list = np.arange(10) return num_listdef _from_tensor_slice(x): return tf.data.Dataset.from_tensor_slices(x)softmax_data = tf.data.Dataset.range(1000) # 構造一個隊列softmax_data = softmax_data.map(lambda x:tf.py_func(_parse_function, [x], [tf.int32]))# 將數據進行傳入softmax_data = softmax_data.flat_map(_from_tensor_slice) #將數據進行平鋪, 將其變為一維的數據,from_tensor_slice將數據可以輸出softmax_data = softmax_data.batch(1) #構造一個batch的數量softmax_iter = softmax_data.make_initializable_iterator() # 構造數據迭代器softmax_element = softmax_iter.get_next() # 獲得一個batch的數據sess = tf.Session()sess.run(softmax_iter.initializer) # 數據迭代器的初始化操作print(sess.run(softmax_element)) # 實際獲得一個數據print(sess.run(softmax_data))

以上為個人經驗,希望能給大家一個參考,也希望大家多多支持好吧啦網。如有錯誤或未考慮完全的地方,望不吝賜教。

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 亚洲日本高清影院毛片 | 久操免费在线观看 | 多女多p多杂交视频在线观看 | 亚洲精选在线观看 | 农村黄a三级三级三级 | 新加坡毛片 | 亚洲网站大全 | 国产亚洲精品精品国产亚洲综合 | 美女内部福利视频在线观看 | 特黄十八岁大片 | 亚洲综合区小说区激情区噜噜 | 真人肉体一级毛片 | xvideos国产在线视频 | 欧美精品blacked中文字幕 | 久久婷婷五月综合色丁香 | 九九亚洲精品 | 911国产在线观看精品 | 久香草视频在线观看免费 | 黑人巨大系列在线播放 | 国产逼逼| 99欧美视频 | 国产精品人成 | 欧美三级在线播放 | 五月综合激情久久婷婷 | 国产精品一区二区国产 | 国产在线精品观看 | 亚洲午夜精品一区二区蜜桃 | er久99久热只有精品国产 | 日日噜噜夜夜狠狠久久丁香七 | 亚洲欧美偷拍视频 | 黄页成人免费网站 | 国产成人精品三级91在线影院 | 国产精品一二三区 | 国产一级簧片 | 特级欧美午夜aa毛片 | 国产福利视频在线 | 国产精品第二页 | 日本成人影院 | 国产在线观看a | 国产精品久久久久久麻豆一区 | 91精品国产高清久久久久久 |