python實現canny邊緣檢測
canny邊緣檢測原理
canny邊緣檢測共有5部分組成,下邊我會分別來介紹。
1 高斯模糊(略)
2 計算梯度幅值和方向。
可選用的模板:soble算子、Prewitt算子、Roberts模板等等;
一般采用soble算子,OpenCV也是如此,利用soble水平和垂直算子與輸入圖像卷積計算dx、dy:
進一步可以得到圖像梯度的幅值:
為了簡化計算,幅值也可以作如下近似:
角度為:
如下圖表示了中心點的梯度向量、方位角以及邊緣方向(任一點的邊緣與梯度向量正交) :
θ = θm = arctan(dy/dx)(邊緣方向)α = θ + 90= arctan(dy/dx) + 90(梯度方向)
3、根據角度對幅值進行非極大值抑制
劃重點:是沿著梯度方向對幅值進行非極大值抑制,而非邊緣方向,這里初學者容易弄混。
例如:3*3區域內,邊緣可以劃分為垂直、水平、45°、135°4個方向,同樣,梯度反向也為四個方向(與邊緣方向正交)。因此為了進行非極大值,將所有可能的方向量化為4個方向,如下圖:
即梯度方向分別為
α = 90
α = 45
α = 0
α = -45
非極大值抑制即為沿著上述4種類型的梯度方向,比較3*3鄰域內對應鄰域值的大?。?/p>
在每一點上,領域中心 x 與沿著其對應的梯度方向的兩個像素相比,若中心像素為最大值,則保留,否則中心置0,這樣可以抑制非極大值,保留局部梯度最大的點,以得到細化的邊緣。
4、用雙閾值算法檢測和連接邊緣
1選取系數TH和TL,比率為2:1或3:1。(一般取TH=0.3或0.2,TL=0.1);
2 將小于低閾值的點拋棄,賦0;將大于高閾值的點立即標記(這些點為確定邊緣 點),賦1或255;
3將小于高閾值,大于低閾值的點使用8連通區域確定(即:只有與TH像素連接時才會被接受,成為邊緣點,賦 1或255)
python 實現
import cv2import numpy as npm1 = np.array([[1, 0, -1], [2, 0, -2], [1, 0, -1]])m2 = np.array([[1, 2, 1], [0, 0, 0], [-1, -2, -1]])from matplotlib import pyplot as plt# 第一步:完成高斯平滑濾波img = cv2.imread('B9064CF1D57871735CE11A0F368DCF27.jpg', 0)sobel = cv2.Canny(img, 50, 100)cv2.namedWindow(’5’, 0)cv2.resizeWindow('5', 640, 480)cv2.imshow('5', sobel) # 角度值灰度圖img = cv2.GaussianBlur(img, (3, 3), 2)# 第二步:完成一階有限差分計算,計算每一點的梯度幅值與方向img1 = np.zeros(img.shape, dtype='uint8') # 與原圖大小相同theta = np.zeros(img.shape, dtype='float') # 方向矩陣原圖像大小img = cv2.copyMakeBorder(img, 1, 1, 1, 1, borderType=cv2.BORDER_REPLICATE)rows, cols = img.shapefor i in range(1, rows - 1):for j in range(1, cols - 1):Gy = [np.sum(m2 * img[i - 1:i + 2, j - 1:j + 2])]#Gy = (np.dot(np.array([1, 1, 1]), (m2 * img[i - 1:i + 2, j - 1:j + 2]))).dot(np.array([[1], [1], [1]]))Gx = [np.sum(m1 * img[i - 1:i + 2, j - 1:j + 2])]#Gx = (np.dot(np.array([1, 1, 1]), (m1 * img[i - 1:i + 2, j - 1:j + 2]))).dot(np.array([[1], [1], [1]]))if Gx[0] == 0:theta[i - 1, j - 1] = 90continueelse:temp = ((np.arctan2(Gy[0], Gx[0])) * 180 / np.pi)+90if Gx[0] * Gy[0] > 0:if Gx[0] > 0:# 第一象線theta[i - 1, j - 1] = np.abs(temp)else:# 第三象線theta[i - 1, j - 1] = (np.abs(temp) - 180)if Gx[0] * Gy[0] < 0:if Gx[0] > 0:# 第四象線theta[i - 1, j - 1] = (-1) * np.abs(temp)else:# 第二象線theta[i - 1, j - 1] = 180 - np.abs(temp)img1[i - 1, j - 1] = (np.sqrt(Gx[0] ** 2 + Gy[0] ** 2))for i in range(1, rows - 2):for j in range(1, cols - 2):if (((theta[i, j] >= -22.5) and (theta[i, j] < 22.5)) or((theta[i, j] <= -157.5) and (theta[i, j] >= -180)) or((theta[i, j] >= 157.5) and (theta[i, j] < 180))):theta[i, j] = 0.0elif (((theta[i, j] >= 22.5) and (theta[i, j] < 67.5)) or((theta[i, j] <= -112.5) and (theta[i, j] >= -157.5))):theta[i, j] = -45.0elif (((theta[i, j] >= 67.5) and (theta[i, j] < 112.5)) or((theta[i, j] <= -67.5) and (theta[i, j] >= -112.5))):theta[i, j] = 90.0elif (((theta[i, j] >= 112.5) and (theta[i, j] < 157.5)) or((theta[i, j] <= -22.5) and (theta[i, j] >= -67.5))):theta[i, j] = 45.0’’’for i in range(1, rows - 1):for j in range(1, cols - 1):Gy = [np.sum(m2 * img[i - 1:i + 2, j - 1:j + 2])]#Gy = (np.dot(np.array([1, 1, 1]), (m2 * img[i - 1:i + 2, j - 1:j + 2]))).dot(np.array([[1], [1], [1]]))Gx = [np.sum(m1 * img[i - 1:i + 2, j - 1:j + 2])]#Gx = (np.dot(np.array([1, 1, 1]), (m1 * img[i - 1:i + 2, j - 1:j + 2]))).dot(np.array([[1], [1], [1]]))if Gx[0] == 0:theta[i - 1, j - 1] = 90continueelse:temp = (np.arctan2(Gy[0], Gx[0])) * 180 / np.pi)if Gx[0] * Gy[0] > 0:if Gx[0] > 0:# 第一象線theta[i - 1, j - 1] = np.abs(temp)else:# 第三象線theta[i - 1, j - 1] = (np.abs(temp) - 180)if Gx[0] * Gy[0] < 0:if Gx[0] > 0:# 第四象線theta[i - 1, j - 1] = (-1) * np.abs(temp)else:# 第二象線theta[i - 1, j - 1] = 180 - np.abs(temp)img1[i - 1, j - 1] = (np.sqrt(Gx[0] ** 2 + Gy[0] ** 2))for i in range(1, rows - 2):for j in range(1, cols - 2):if (((theta[i, j] >= -22.5) and (theta[i, j] < 22.5)) or((theta[i, j] <= -157.5) and (theta[i, j] >= -180)) or((theta[i, j] >= 157.5) and (theta[i, j] < 180))):theta[i, j] = 90.0elif (((theta[i, j] >= 22.5) and (theta[i, j] < 67.5)) or((theta[i, j] <= -112.5) and (theta[i, j] >= -157.5))):theta[i, j] = 45.0elif (((theta[i, j] >= 67.5) and (theta[i, j] < 112.5)) or((theta[i, j] <= -67.5) and (theta[i, j] >= -112.5))):theta[i, j] = 0.0elif (((theta[i, j] >= 112.5) and (theta[i, j] < 157.5)) or((theta[i, j] <= -22.5) and (theta[i, j] >= -67.5))):theta[i, j] = -45.0’’’# 第三步:進行 非極大值抑制計算img2 = np.zeros(img1.shape) # 非極大值抑制圖像矩陣for i in range(1, img2.shape[0] - 1):for j in range(1, img2.shape[1] - 1):# 0度j不變if (theta[i, j] == 0.0) and (img1[i, j] == np.max([img1[i, j], img1[i + 1, j], img1[i - 1, j]])):img2[i, j] = img1[i, j]if (theta[i, j] == -45.0) and img1[i, j] == np.max([img1[i, j], img1[i - 1, j - 1], img1[i + 1, j + 1]]):img2[i, j] = img1[i, j]if (theta[i, j] == 90.0) and img1[i, j] == np.max([img1[i, j], img1[i, j + 1], img1[i, j - 1]]):img2[i, j] = img1[i, j]if (theta[i, j] == 45.0) and img1[i, j] == np.max([img1[i, j], img1[i - 1, j + 1], img1[i + 1, j - 1]]):img2[i, j] = img1[i, j]# 第四步:雙閾值檢測和邊緣連接img3 = np.zeros(img2.shape) # 定義雙閾值圖像# TL = 0.4*np.max(img2)# TH = 0.5*np.max(img2)TL = 50TH = 100# 關鍵在這兩個閾值的選擇for i in range(1, img3.shape[0] - 1):for j in range(1, img3.shape[1] - 1):if img2[i, j] < TL:img3[i, j] = 0elif img2[i, j] > TH:img3[i, j] = 255elif ((img2[i + 1, j] < TH) or (img2[i - 1, j] < TH) or (img2[i, j + 1] < TH) or(img2[i, j - 1] < TH) or (img2[i - 1, j - 1] < TH) or (img2[i - 1, j + 1] < TH) or(img2[i + 1, j + 1] < TH) or (img2[i + 1, j - 1] < TH)):img3[i, j] = 255cv2.namedWindow(’1’, 0)cv2.resizeWindow('1', 640, 480)cv2.namedWindow(’2’, 0)cv2.resizeWindow('2', 640, 480)cv2.namedWindow(’3’, 0)cv2.resizeWindow('3', 640, 480)cv2.namedWindow(’4’, 0)cv2.resizeWindow('4', 640, 480)cv2.imshow('1', img) # 原始圖像cv2.imshow('2', img1) # 梯度幅值圖cv2.imshow('3', img2) # 非極大值抑制灰度圖cv2.imshow('4', img3) # 最終效果圖cv2.waitKey(0)
運行結果如下
以上就是python實現canny邊緣檢測的詳細內容,更多關于canny邊緣檢測的資料請關注好吧啦網其它相關文章!
相關文章: