亚洲精品久久久中文字幕-亚洲精品久久片久久-亚洲精品久久青草-亚洲精品久久婷婷爱久久婷婷-亚洲精品久久午夜香蕉

您的位置:首頁技術文章
文章詳情頁

python 浮點數四舍五入需要注意的地方

瀏覽:2日期:2022-07-13 15:41:40

本文主要分享基于python的數據分析三方庫pandas,numpy的一次爬坑經歷,發現并分析了python語言對于浮點數精度處理不準確的問題,并在最后給出合理的解決方案。如果你也在用python處理數據,建議看一下,畢竟0.1的誤差都可能造成比較大的影響。

問題出現

早上到了公司,領導發了幾個文件過來,說這兩天測試環境跑出來的數據,與實際情況有所出入,看看哪出的問題,盡快解決···

開始排查

先對比數據,發現并不是所有的數據都出現問題,只有10%左右的數據有這個問題,說明應該不是邏輯上的問題,初步判斷可能為個別情況需要特殊處理,考慮不周導致檢查梳理各個運算模塊,用debug斷點調試一波,確定了數據出現偏差的模塊通過單獨測試這個單元模塊最終確定,涉及到兩數相除結果為0.5(浮點數)的地方有問題預期結果:np.round(0.5)=1,實際運算結果:np.round(0.5)=0,于是我做了如下的試驗

# 基于python3.7版本 >>> import numpy as np # 先看看 0 < x < 1 這個范圍的結果,發現有問題 >>> np.round(0.50) 0.0 >>> np.round(0.51) 1.0 >>> np.round(0.49) 0.0 # 我擔心是不是只有小數點為.5的都會呈現這種問題,所以測試了 x > 1的結果,發現還是有問題 >>> np.round(1.5) 2.0 >>> np.round(2.5) 2.0 >>> np.round(3.5) 4.0 >>> np.round(4.5) 4.0

通過對比,發現確實涉及到.5的值會有些和預想的不同,看看啥原因

分析問題

確實發現了關于浮點數(.5出現了理解上的偏差),看看官方文檔怎么解釋這個現象

numpy.around(a, decimals=0, out=None)[source] Evenly round to the given number of decimals. # 對于恰好介于四舍五入的十進制值之間的中間值(.5),NumPy會四舍五入為最接近的偶數值。 # 因此1.5和2.5四舍五入為2.0,-0.5和0.5四舍五入為0.0,依此類推。 For values exactly halfway between rounded decimal values, NumPy rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0, -0.5 and 0.5 round to 0.0, etc. # np.around使用快速但有時不精確的算法來舍入浮點數據類型。 # 對于正小數,它等效于np.true_divide(np.rint(a * 10 **小數),10 **小數), # 由于IEEE浮點標準[1]和 十次方縮放時引入的錯誤 np.around uses a fast but sometimes inexact algorithm to round floating-point datatypes. For positive decimals it is equivalent to np.true_divide(np.rint(a * 10**decimals), 10**decimals), which has error due to the inexact representation of decimal fractions in the IEEE floating point standard [1] and errors introduced when scaling by powers of ten

其實也就是說:對于帶有.5這種剛好介于中間的值,返回的是相鄰的偶數值 白話解釋:如果一個數字帶有浮點數(.5),整數部分為偶數,則返回這個偶數;整數部分奇數,則返回這個奇數+1的偶數 規律解釋:如果整數部分能夠整除2,則返回整數部分;如果整數部分不能整除2,則返回整數部分 +1

解決問題

先不做任何改動,看下數據誤差的情形

# 我們為了先看下現象,構造如下案例 import pandas as pd import numpy as np df = pd.DataFrame({'num1': [1, 1, 1.5, 5, 7.5], 'num2': [2, 3, 1, 6, 3]}) df['真實值'] = df['num1'] / df['num2'] # 看下round函數過后的結果 df['偏差值'] = np.round(df['num1'] / df['num2'])

原始結果圖片如下

python 浮點數四舍五入需要注意的地方

不做處理,期望值和偏差值不等的情況出現

我的解決方案

我根據我的精度要求,構建精度范圍所需要保留的小數點的最后一位,通過這個數字是否為5,判斷是否需要向上取整 舉例來說,本案例中我只需要保留整數部分的數據,那么我只需要確定小數點后第一位是否是數字5就可以了

上代碼

import pandas as pd import numpy as np import math df = pd.DataFrame({'除數': [1, 1, 1.5, 5, 7.5], '被除數': [2, 3, 1, 6, 3]}) # 記錄真實值 df['真實值'] = df['除數'] / df['被除數'] # 記錄整數部分 df['輔助整數列'] = df['真實值'].apply(lambda x: math.modf(x)[1]) # 記錄小數部分,因為我的最后結果精度為只保留整數部分,所以我只需要保留一個小數點位進行判斷是否需要進位操作 df['輔助小數列'] = df['真實值'].apply(lambda x: str(math.modf(x)[0]).split('.')[1][0]) # 小數點后的第一位是為5,則向上取整,不是5則調用原np.round就行了 df['期望值修正'] = df.apply(lambda x: x.輔助整數列 + 1 if (x.輔助小數列 == '5') else np.round(x.真實值), axis=1)

結果如下所示

python 浮點數四舍五入需要注意的地方

以上就是python 四舍五入需要注意的地方的詳細內容,更多關于python 四舍五入的資料請關注好吧啦網其它相關文章!

標簽: Python 編程
相關文章:
主站蜘蛛池模板: 婷婷五色| 尤物在线免费观看 | 99久久婷婷国产综合精品hsex | 国产伦理自拍 | 婷婷丁香在线观看 | 亚洲国产日韩欧美 | 久久精品一区二区国产 | 久久久社区 | 日日噜噜夜夜狠狠tv视频免费 | 高清一级毛片 | 国产成人lu在线视频 | 欧美一级毛片图 | 成人免费福利片在线观看 | 国产福利微拍精品一区二区 | 欧美卡1卡2卡三卡网站入口 | 久久久国产在线 | 久久精品免视看国产成人2021 | 国产精品视频免费播放 | 免费看大片的 | 免费看三级全黄 | 澳门久久精品 | 亚洲精品专区一区二区三区 | 亚洲第九十九页 | 免费人成在线视频播放2022 | 久久国产精品亚洲va麻豆 | 青青青在线日本免费视频 | 亚洲一区免费观看 | 大尺度做爰床戏呻吟免费观 | 免费碰碰视频 | 加勒比一道本综合 | 亚洲欧美日韩在线一区二区三区 | 性生活视频网站 | 欧美黑人与白人做爰 | 九九99香蕉在线视频网站 | 亚洲91| 毛片一级在线观看 | 日韩欧美毛片免费观看视频 | 公么吃奶满足了我苏媚 | 国产自愉怕一区二区三区 | 色涩网站 | 99久久精品男女性高爱 |