python模擬嗶哩嗶哩滑塊登入驗證的實現
準備工具
pip3 install PIL pip3 install opencv-python pip3 install numpy 谷歌驅動建議指定清華源下載速度會更快點
使用方法 : pip3 install opencv-python -i https://pypi.tuna.tsinghua.edu.cn/simple/opencv-python/
谷歌驅動谷歌驅動下載鏈接 :http://npm.taobao.org/mirrors/chromedriver/
前言
本篇文章采用的是cv2的Canny邊緣檢測算法進行圖像識別匹配。
Canny邊緣檢測算法參考鏈接:https://www.jb51.net/article/185336.htm
具體使用的是Canny的matchTemplate方法進行模糊匹配,匹配方法用CV_TM_CCOEFF_NORMED歸一化相關系數匹配。得出的max_loc就是匹配出來的位置信息。從而達到位置的距離。
難點
由于圖像采用放大的效果匹配出的距離偏大,難以把真實距離,并存在誤差。 由于嗶哩嗶哩滑塊驗證進一步采取做了措施,如果滑動時間過短,會導致驗證登入失敗。所以我這里采用變速的方法,在相同時間內滑動不同的距離。 誤差的存在是必不可少的,有時會導致驗證失敗,這都是正常現象。流程
1.實例化谷歌瀏覽器 ,并打開嗶哩嗶哩登入頁面。
2.點擊登陸,彈出滑動驗證框。
3.全屏截圖、后按照尺寸裁剪各兩張。
5.模糊匹配兩張圖片,從而獲取匹配結果以及位置信息 。
6.將位置信息與頁面上的位移距離轉化,并盡可能少的減少誤差 。
7.變速的拖動滑塊到指定位置,從而達到模擬登入。
效果圖
代碼實例
庫安裝好后,然后填寫配置區域后即可運行。
from PIL import Imagefrom time import sleepfrom selenium import webdriverfrom selenium.webdriver import ActionChainsfrom selenium.webdriver.common.by import Byfrom selenium.webdriver.support.ui import WebDriverWaitfrom selenium.webdriver.support import expected_conditions as ECimport cv2import numpy as npimport math############ 配置區域 #########zh=’’ #賬號pwd=’’ #密碼 # chromedriver的路徑chromedriver_path = 'C:Program Files (x86)GoogleChromeApplicationchromedriver.exe'####### end #########options = webdriver.ChromeOptions()options.add_argument(’--no-sandbox’)options.add_argument(’--window-size=1020,720’)# options.add_argument(’--start-maximized’) # 瀏覽器窗口最大化options.add_argument(’--disable-gpu’)options.add_argument(’--hide-scrollbars’)options.add_argument(’test-type’)options.add_experimental_option('excludeSwitches', ['ignore-certificate-errors', 'enable-automation']) # 設置為開發者模式driver = webdriver.Chrome(options=options, executable_path=chromedriver_path)driver.get(’https://passport.bilibili.com/login’)# 登入def login(): driver.find_element_by_id('login-username').send_keys(zh) driver.find_element_by_id('login-passwd').send_keys(pwd) driver.find_element_by_css_selector('#geetest-wrap > div > div.btn-box > a.btn.btn-login').click() print('點擊登入')# 整個圖,跟滑塊整個圖def screen(screenXpath): img = WebDriverWait(driver, 20).until( EC.visibility_of_element_located((By.XPATH, screenXpath)) ) driver.save_screenshot('allscreen.png') # 對整個瀏覽器頁面進行截圖 left = img.location[’x’]+160 #往右 top = img.location[’y’]+60 # 往下 right = img.location[’x’] + img.size[’width’]+230 # 往左 bottom = img.location[’y’] + img.size[’height’]+110 # 往上 im = Image.open(’allscreen.png’) im = im.crop((left, top, right, bottom)) # 對瀏覽器截圖進行裁剪 im.save(’1.png’) print('截圖完成1') screen_two(screenXpath) screen_th(screenXpath) matchImg(’3.png’,’2.png’)# 滑塊部分圖def screen_two(screenXpath): img = WebDriverWait(driver, 20).until( EC.visibility_of_element_located((By.XPATH, screenXpath)) ) left = img.location[’x’] + 160 top = img.location[’y’] + 80 right = img.location[’x’] + img.size[’width’]-30 bottom = img.location[’y’] + img.size[’height’] + 90 im = Image.open(’allscreen.png’) im = im.crop((left, top, right, bottom)) # 對瀏覽器截圖進行裁剪 im.save(’2.png’) print('截圖完成2')# 滑塊剩余部分圖def screen_th(screenXpath): img = WebDriverWait(driver, 20).until( EC.visibility_of_element_located((By.XPATH, screenXpath)) ) left = img.location[’x’] + 220 top = img.location[’y’] + 60 right = img.location[’x’] + img.size[’width’]+230 bottom = img.location[’y’] + img.size[’height’] +110 im = Image.open(’allscreen.png’) im = im.crop((left, top, right, bottom)) # 對瀏覽器截圖進行裁剪 im.save(’3.png’) print('截圖完成3')#圖形匹配def matchImg(imgPath1,imgPath2): imgs = [] #展示 sou_img1= cv2.imread(imgPath1) sou_img2 = cv2.imread(imgPath2) # 最小閾值100,最大閾值500 img1 = cv2.imread(imgPath1, 0) blur1 = cv2.GaussianBlur(img1, (3, 3), 0) canny1 = cv2.Canny(blur1, 100, 500) cv2.imwrite(’temp1.png’, canny1) img2 = cv2.imread(imgPath2, 0) blur2 = cv2.GaussianBlur(img2, (3, 3), 0) canny2 = cv2.Canny(blur2, 100, 500) cv2.imwrite(’temp2.png’, canny2) target = cv2.imread(’temp1.png’) template = cv2.imread(’temp2.png’) # 調整大小 target_temp = cv2.resize(sou_img1, (350, 200)) target_temp = cv2.copyMakeBorder(target_temp, 5, 5, 5, 5, cv2.BORDER_CONSTANT, value=[255, 255, 255]) template_temp = cv2.resize(sou_img2, (200, 200)) template_temp = cv2.copyMakeBorder(template_temp, 5, 5, 5, 5, cv2.BORDER_CONSTANT, value=[255, 255, 255]) imgs.append(target_temp) imgs.append(template_temp) theight, twidth = template.shape[:2] # 匹配跟拼圖 result = cv2.matchTemplate(target, template, cv2.TM_CCOEFF_NORMED) cv2.normalize( result, result, 0, 1, cv2.NORM_MINMAX, -1 ) min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(result) # 畫圈 cv2.rectangle(target,max_loc,(max_loc[0]+twidth,max_loc[1]+theight),(0,0,255),2) target_temp_n = cv2.resize(target, (350, 200)) target_temp_n = cv2.copyMakeBorder(target_temp_n, 5, 5, 5, 5, cv2.BORDER_CONSTANT, value=[255, 255, 255]) imgs.append(target_temp_n) imstack = np.hstack(imgs) cv2.imshow(’windows’+str(max_loc), imstack) cv2.waitKey(0) cv2.destroyAllWindows() # 計算距離 print(max_loc) dis=str(max_loc).split()[0].split(’(’)[1].split(’,’)[0] x_dis=int(dis)+135 t(x_dis)#拖動滑塊def t(distances): draggable = driver.find_element_by_css_selector(’div.geetest_slider.geetest_ready > div.geetest_slider_button’) ActionChains(driver).click_and_hold(draggable).perform() #抓住 print(driver.title) num=getNum(distances) sleep(3) for distance in range(1,int(num)): print(’移動的步數: ’,distance) ActionChains(driver).move_by_offset(xoffset=distance, yoffset=0).perform() sleep(0.25) ActionChains(driver).release().perform() #松開# 計算步數def getNum(distances): p = 1+4*distances x1 = (-1 + math.sqrt(p)) / 2 x2 = (-1 - math.sqrt(p)) / 2 print(x1,x2) if x1>=0 and x2<0: return x1+2 elif(x1<0 and x2>=0): return x2+2 else: return x1+2def main(): login() sleep(5) screenXpath = ’/html/body/div[2]/div[2]/div[6]/div/div[1]/div[1]/div/a/div[1]/div/canvas[2]’ screen(screenXpath) sleep(5)if __name__ == ’__main__’: main()
有能力的可以研究一下思路,然后寫出更好的解決辦法。
到此這篇關于python模擬嗶哩嗶哩滑塊登入驗證的實現的文章就介紹到這了,更多相關python 滑塊登入驗證內容請搜索好吧啦網以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持好吧啦網!
相關文章: