php回溯算法計算組合總和的實例代碼
給定一個數組 candidates 和一個目標數 target ,找出 candidates 中所有可以使數字和為 target 的組合。
candidates 中的每個數字在每個組合中只能使用一次。
說明所有數字(包括目標數)都是正整數。 解集不能包含重復的組合。
實例輸入:
candidates = [10,1,2,7,6,1,5], target = 8,
所求解集為:
[[1, 7],[1, 2, 5],[2, 6],[1, 1, 6]]
解題思路直接參考回溯算法團滅排列/組合/子集問題。
代碼class Solution { /** * @param Integer[] $candidates * @param Integer $target * @return Integer[][] */ public $res = []; function combinationSum2($candidates, $target) {sort($candidates); // 排序$this->dfs([], $candidates, $target, 0);return $this->res; } function dfs($array, $candidates, $target, $start) {if ($target < 0) return;if ($target === 0) { $this->res[] = $array; return;}$count = count($candidates);for ($i = $start; $i < $count; $i++) { if ($i !== $start && $candidates[$i] === $candidates[$i - 1]) continue; $array[] = $candidates[$i]; $this->dfs($array, $candidates, $target - $candidates[$i], $i + 1);//數字不能重復使用,需要+1 array_pop($array); }}
實例擴展:
<?php/* * k = 2x + y + 1/2z 取值范圍 * 0 <= x <= 1/2k * 0 <= y <= k * 0 <= z < = 2k * x,y,z最大值 2k */$daMi = 100;$result = array();function isOk($t,$daMi,$result){/*{{{*/ $total = 0; $hash = array(); $hash[1] = 2; $hash[2] = 1; $hash[3] = 0.5; for($i=1;$i<=$t;$i++) { $total += $result[$i] * $hash[$i]; } if( $total <= $daMi) { return true; } return false;}/*}}}*/function backtrack($t,$daMi,$result){/*{{{*/ //遞歸出口 if($t > 3) { //輸出最優解 if($daMi == (2 * $result[1] + $result[2] + 0.5 * $result[3])) { echo '最優解,大米:${daMi},大牛:$result[1],中牛: $result[2],小牛:$result[3]n'; } return; } for($i = 0;$i <= 2 * $daMi;$i++) { $result[$t] = $i; //剪枝 if(isOk($t,$daMi,$result)) { backtrack($t+1,$daMi,$result); } $result[$t] = 0; }}/*}}}*/backtrack(1,$daMi,$result);?>
到此這篇關于php回溯算法計算組合總和的實例代碼的文章就介紹到這了,更多相關php回溯算法計算組合總和的方法內容請搜索好吧啦網以前的文章或繼續瀏覽下面的相關文章希望大家以后多多支持好吧啦網!
相關文章: